Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
PLoS Pathog ; 19(12): e1011817, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127684

RESUMO

It is increasingly appreciated that pathogens can spread as infectious units constituted by multiple, genetically diverse genomes, also called collective infectious units or genome collectives. However, genetic characterization of the spatial dynamics of collective infectious units in animal hosts is demanding, and it is rarely feasible in humans. Measles virus (MeV), whose spread in lymphatic tissues and airway epithelia relies on collective infectious units, can, in rare cases, cause subacute sclerosing panencephalitis (SSPE), a lethal human brain disease. In different SSPE cases, MeV acquisition of brain tropism has been attributed to mutations affecting either the fusion or the matrix protein, or both, but the overarching mechanism driving brain adaptation is not understood. Here we analyzed MeV RNA from several spatially distinct brain regions of an individual who succumbed to SSPE. Surprisingly, we identified two major MeV genome subpopulations present at variable frequencies in all 15 brain specimens examined. Both genome types accumulated mutations like those shown to favor receptor-independent cell-cell spread in other SSPE cases. Most infected cells carried both genome types, suggesting the possibility of genetic complementation. We cannot definitively chart the history of the spread of this virus in the brain, but several observations suggest that mutant genomes generated in the frontal cortex moved outwards as a collective and diversified. During diversification, mutations affecting the cytoplasmic tails of both viral envelope proteins emerged and fluctuated in frequency across genetic backgrounds, suggesting convergent and potentially frequency-dependent evolution for modulation of fusogenicity. We propose that a collective infectious unit drove MeV pathogenesis in this brain. Re-examination of published data suggests that similar processes may have occurred in other SSPE cases. Our studies provide a primer for analyses of the evolution of collective infectious units of other pathogens that cause lethal disease in humans.


Assuntos
Sarampo , Panencefalite Esclerosante Subaguda , Animais , Humanos , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/patologia , Vírus do Sarampo/genética , Vírus do Sarampo/metabolismo , Sarampo/genética , Sarampo/metabolismo , Encéfalo/patologia , Tropismo/genética
2.
PLoS Pathog ; 19(7): e1011528, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37494386

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein. The molecular mechanisms underlying establishment and maintenance of persistent infection are unclear because it is impractical to isolate viruses before the appearance of clinical signs. In this study, we found that the L and P proteins, components of viral RNA-dependent RNA polymerase (RdRp), of an SSPE virus Kobe-1 strain did not promote but rather attenuated viral neuropathogenicity. Viral RdRp activity corresponded to F protein expression; the suppression of RdRp activity in the Kobe-1 strain because of mutations in the L and P proteins led to restriction of the F protein level, thereby reducing cell-to-cell fusion mediated propagation in neuronal cells and decreasing neuropathogenicity. Therefore, the L and P proteins of Kobe-1 did not contribute to progression of SSPE. Three mutations in the L protein strongly suppressed RdRp activity. Recombinant MV harboring the three mutations limited viral spread in neuronal cells while preventing the release of infectious progeny particles; these changes could support persistent infection by enabling host immune escape and preventing host cell lysis. Therefore, the suppression of RdRp activity is necessary for the persistent infection of the parental MV on the way to transform into Kobe-1 SSPE virus. Because mutations in the genome of an SSPE virus reflect the process of SSPE development, mutation analysis will provide insight into the mechanisms underlying persistent infection.


Assuntos
Sarampo , Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Humanos , Vírus do Sarampo/genética , Vírus SSPE/genética , Vírus SSPE/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/patologia , Proteínas do Complexo da Replicase Viral/metabolismo , Infecção Persistente , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Sarampo/genética , Sarampo/metabolismo
3.
J Virol ; 97(5): e0034023, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166307

RESUMO

Measles virus (MeV), the causative agent of measles, is an enveloped RNA virus of the family Paramyxoviridae, which remains an important cause of childhood morbidity and mortality. MeV has two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. During viral entry or virus-mediated fusion between infected cells and neighboring susceptible cells, the head domain of the H protein initially binds to its receptors, signaling lymphocytic activation molecule family member 1 (SLAM) and nectin-4, and then the stalk region of the H protein transmits the fusion-triggering signal to the F protein. MeV may persist in the human brain and cause a fatal neurodegenerative disease, subacute sclerosing panencephalitis (SSPE). Recently, we showed, using in vitro cell culture, that cell adhesion molecule (CADM) 1 and CADM2 are host factors that trigger hyperfusogenic mutant F proteins, causing cell-to-cell fusion and the transfer of the MeV genome between neurons. Unlike conventional receptors, CADM1 and CADM2 interact in cis (on the same membrane) with the H protein and then trigger membrane fusion. Here, we show that alanine substitutions in part of the stalk region (positions 171-175) abolish the ability of the H protein to mediate membrane fusion triggered by CADM1 and CADM2, but not by SLAM. The recombinant hyperfusogenic MeV carrying this mutant H protein loses its ability to spread in primary mouse neurons as well as its neurovirulence in experimentally infected suckling hamsters. These results indicate that CADM1 and CADM2 are key molecules for MeV propagation in the brain and its neurovirulence in vivo. IMPORTANCE Measles is an acute febrile illness with skin rash. Despite the availability of highly effective vaccines, measles is still an important cause of childhood morbidity and mortality in many countries. The World Health Organization estimates that more than 120,000 people died from measles worldwide in 2021. Measles virus (MeV), the causative agent of measles, can also cause a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. There is currently no effective treatment for this disease. In this study, using recombinant MeVs with altered receptor usage patterns, we show that cell adhesion molecule (CADM) 1 and CADM2 are host factors critical for MeV spread in neurons and its neurovirulence. These findings further our understanding of the molecular mechanism of MeV neuropathogenicity.


Assuntos
Sarampo , Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Cricetinae , Humanos , Camundongos , Animais , Vírus do Sarampo/fisiologia , Panencefalite Esclerosante Subaguda/genética , Hemaglutininas/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas Recombinantes/metabolismo , Neurônios , Molécula 1 de Adesão Celular/metabolismo
4.
Alzheimer Dis Assoc Disord ; 37(2): 168-170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820836

RESUMO

Homozygous mutations in the triggering receptor expressed on myeloid cells 2 (TREM2) gene are known to cause Nasu-Hakola disease, which is a rare cause of progressive presenile dementia. A 36-year-old woman presented with repetitive seizures, a 5-year history of progressive behavioral and cognitive changes, and an affected sibling. Magnetic resonance imaging of the brain revealed an ischemic lesion in the left medial temporal lobe. Extensive evaluation of juvenile stroke revealed that viral and autoimmune encephalitides, serum lactate and pyruvate levels, and cerebrospinal fluid composition were all normal. Brain magnetic resonance imaging was notable of thinning of the corpus callosum and caudate and frontotemporal cortical atrophy, in addition to the ischemic lesion. Whole exome sequencing revealed a homozygous mutation (c.A257T; p.D86V) in TREM2. The present case expands the clinical phenotype of Nasu-Hakola disease and further suggests that TREM2 pathway might have role in vessel wall health.


Assuntos
Lipodistrofia , Acidente Vascular Cerebral , Panencefalite Esclerosante Subaguda , Humanos , Panencefalite Esclerosante Subaguda/diagnóstico , Panencefalite Esclerosante Subaguda/genética , Encéfalo/patologia , Lipodistrofia/genética , Acidente Vascular Cerebral/genética
5.
Sci Adv ; 9(4): eadf3731, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706187

RESUMO

Measles virus (MeV), which is usually non-neurotropic, sometimes persists in the brain and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection, serving as a model for persistent viral infections. The persisting MeVs have hyperfusogenic mutant fusion (F) proteins that likely enable cell-cell fusion at synapses and "en bloc transmission" between neurons. We here show that during persistence, F protein fusogenicity is generally enhanced by cumulative mutations, yet mutations paradoxically reducing the fusogenicity may be selected alongside the wild-type (non-neurotropic) MeV genome. A mutant F protein having SSPE-derived substitutions exhibits lower fusogenicity than the hyperfusogenic F protein containing some of those substitutions, but by the wild-type F protein coexpression, the fusogenicity of the former F protein is enhanced, while that of the latter is nearly abolished. These findings advance the understanding of the long-term process of MeV neuropathogenicity and provide critical insight into the genotype-phenotype relationships of en bloc transmitted viruses.


Assuntos
Panencefalite Esclerosante Subaguda , Humanos , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Vírus do Sarampo/genética , Encéfalo/metabolismo , Mutação
6.
J Child Neurol ; 38(1-2): 38-43, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36544356

RESUMO

Background: Subacute sclerosing panencephalitis is a progressive neurodegenerative disease that is a late complication of measles infection. However, to date, the pathogenesis of subacute sclerosing panencephalitis is still not explained; both viral and host factors seem to be associated. The present study aimed to investigate the relationship between NOD1 and NOD2 gene variants and subacute sclerosing panencephalitis. Methods: The gene variants of NOD1 (rs2075820 and rs2075818) and NOD2 (R334Q and R334W) were explored in 64 subacute sclerosing panencephalitis patients and 70 controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: The frequencies of the AA genotype and A allele of rs2075820 (NOD1; c.796G>A) polymorphism were lower in patients compared with controls (P = .022 and .014, respectively). The presence of the A allele of rs2075820 may be considered as a protective factor for subacute sclerosing panencephalitis. There was a significant difference between the groups in rs2075818 (NOD1 G/C) polymorphism, and the CC genotype increased the risk of subacute sclerosing panencephalitis by 3.471-fold. The carriers of the C allele of rs2075818 (G/C) had a 1.855-fold susceptibility to subacute sclerosing panencephalitis (P = .018). The GC genotype might be associated with subacute sclerosing panencephalitis susceptibility in the patients compared with patients without having that haplotype (P = .03). Conclusions: Thus, we identified an association between subacute sclerosing panencephalitis and the rs2075820 (NOD1 G/A) and rs2075818 (NOD1 G/C) polymorphisms. These findings implicate a possible effect of this genetic polymorphism in susceptibility to subacute sclerosing panencephalitis, which needs to be confirmed in bigger populations.


Assuntos
Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Humanos , Panencefalite Esclerosante Subaguda/genética , Polimorfismo Genético , Genótipo , Reação em Cadeia da Polimerase , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética
7.
J Alzheimers Dis ; 89(4): 1211-1219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36031890

RESUMO

BACKGROUND: Homozygous variants of the TREM2 and TYROBP genes have been shown to be causative for multiple bone cysts and neurodegeneration leading to progressive dementia (NHD, Nasu-Hakola disease). OBJECTIVE: To determine if biallelic variants of these genes and/or oligogenic inheritance could be responsible for a wider spectrum of neurodegenerative conditions. METHODS: We analyzed 52 genes associated with neurodegenerative disorders using targeted next generation sequencing in a selected group of 29 patients (n = 14 Alzheimer's disease, n = 8 frontotemporal dementia, n = 7 amyotrophic lateral sclerosis) carrying diverse already determined rare variants in exon 2 of TREM2. Molecular modeling was used to get an insight into the potential effects of the mutation. RESULTS: We identified a novel mutation c.401_406delinsTCTAT; p.(Asp134Valfs*55) in exon 3 of TREM2 in an Alzheimer's disease patient also carrying the p.Arg62His TREM2 variant. Molecular modeling revealed that the identified mutation prevents anchoring of the TREM2 protein in the membrane, leaving the core of the Ig-like domain intact. CONCLUSION: Our results expand the spectrum of neurodegenerative diseases, where the carriers of biallelic mutations in TREM2 have been described for Alzheimer's disease, and highlight the impact of variant burden in other genes on phenotypic heterogeneity.


Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana , Doenças Neurodegenerativas , Osteocondrodisplasias , Receptores Imunológicos , Panencefalite Esclerosante Subaguda , Doença de Alzheimer/genética , Humanos , Lipodistrofia , Glicoproteínas de Membrana/genética , Doenças Neurodegenerativas/genética , Osteocondrodisplasias/genética , Receptores Imunológicos/genética , Panencefalite Esclerosante Subaguda/genética
8.
Virology ; 573: 1-11, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35679629

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurodegenerative disease caused by measles virus variants (SSPE viruses) that results in eventual death. Amino acid substitution(s) in the viral fusion (F) protein are key for viral propagation in the brain in a cell-to-cell manner, a specific trait of SSPE viruses, leading to neuropathogenicity. In this study, we passaged an SSPE virus in cultured human neuronal cells and isolated an adapted virus that propagated more efficiently in neuronal cells and exhibited increased cell-to-cell fusion. Contrary to our expectation, the virus harbored mutations in the large protein, a viral RNA-dependent RNA polymerase, and in the phosphoprotein, its co-factor, rather than in the F protein. Our results imply that upregulated RNA polymerase activity, which increases F protein expression and cell-to-cell fusion, could be a viral factor that provides a growth advantage and contributes to the adaptation of SSPE viruses to neuronal cells.


Assuntos
Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Humanos , Vírus do Sarampo/fisiologia , Vírus SSPE/genética , Vírus SSPE/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Regulação para Cima , Proteínas Virais de Fusão/genética , Proteínas do Complexo da Replicase Viral
9.
Neuroscience ; 497: 324-339, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35760218

RESUMO

Microglia are unique cells in the central nervous system (CNS), being considered a sub-type of CNS macrophage. These cells monitor nearby micro-regions, having roles that far exceed immunological and scavengering functions, being fundamental for developing, protecting and maintaining the integrity of grey and white matter. Microglia might become dysfunctional, causing abnormal CNS functioning early or late in the life of patients, leading to neurologic or psychiatric disorders and premature death in some patients. Observations that the impairment of normal microglia function per se could lead to neurological or psychiatric diseases have been mainly obtained from genetic and molecular studies of Nasu-Hakola disease, caused by TYROBP or TREM2 mutations, and from studies of adult-onset leukoencephalopathy with axonal spheroids (ALSP), caused by CSF1R mutations. These classical microgliopathies are being named here Microgliopathy Type I. Recently, mutations in TREM2 have also been associated with Alzheimer Disease. However, in Alzheimer Disease TREM2 allele variants lead to an impaired, but functional TREM2 protein, so that patients do not develop Nasu-Hakola disease but are at increased risk to develop other neurodegenerative diseases. Alzheimer Disease is the prototype of the neurodegenerative disorders associated with these TREM2 variants, named here the Microgliopathies Type II. Here, we review clinical, pathological and some molecular aspects of human diseases associated with primary microglia dysfunctions and briefly comment some possible therapeutic approaches to theses microgliopathies. We hope that our review might update the interesting discussion about the impact of intrinsic microglia dysfunctions in the genesis of some pathologic processes of the CNS.


Assuntos
Doença de Alzheimer , Panencefalite Esclerosante Subaguda , Substância Branca , Adulto , Doença de Alzheimer/metabolismo , Humanos , Lipodistrofia , Microglia/metabolismo , Osteocondrodisplasias , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Panencefalite Esclerosante Subaguda/patologia
10.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903248

RESUMO

Measles virus (MeV) is resurgent and caused >200,000 deaths in 2019. MeV infection can establish a chronic latent infection of the brain that can recrudesce months to years after recovery from the primary infection. Recrudescent MeV leads to fatal subacute sclerosing panencephalitis (SSPE) or measles inclusion body encephalitis (MIBE) as the virus spreads across multiple brain regions. Most clinical isolates of SSPE/MIBE strains show mutations in the fusion (F) gene that result in a hyperfusogenic phenotype in vitro and allow for efficient spread in primary human neurons. Wild-type MeV receptor-binding protein is indispensable for manifesting these mutant F phenotypes, even though neurons lack canonical MeV receptors (CD150/SLAMF1 or nectin-4). How such hyperfusogenic F mutants are selected and whether they confer a fitness advantage for efficient neuronal spread is unresolved. To better understand the fitness landscape that allows for the selection of such hyperfusogenic F mutants, we conducted a screen of ≥3.1 × 105 MeV-F point mutants in their genomic context. We rescued and amplified our genomic MeV-F mutant libraries in BSR-T7 cells under conditions in which MeV-F-T461I (a known SSPE mutant), but not wild-type MeV, can spread. We recovered known SSPE mutants but also characterized at least 15 hyperfusogenic F mutations with an SSPE phenotype. Structural mapping of these mutants onto the prefusion MeV-F trimer confirm and extend our understanding of the F regulatory domains in MeV-F. Our list of hyperfusogenic F mutants is a valuable resource for future studies into MeV neuropathogenesis and the regulation of paramyxovirus F.


Assuntos
Vírus do Sarampo/genética , Sarampo/genética , Panencefalite Esclerosante Subaguda/genética , Proteínas Virais de Fusão/genética , Substituição de Aminoácidos/genética , Animais , Encéfalo/patologia , Encéfalo/virologia , Chlorocebus aethiops , Humanos , Sarampo/patologia , Sarampo/virologia , Vírus do Sarampo/patogenicidade , Mutação/genética , Neurônios/patologia , Neurônios/virologia , Panencefalite Esclerosante Subaguda/patologia , Panencefalite Esclerosante Subaguda/virologia , Células Vero
11.
J Alzheimers Dis ; 79(1): 25-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33216037

RESUMO

Nasu-Hakola disease is a rare autosomal recessive disorder associated to mutations in TREM2 and DAP12 genes, neuropathologically characterized by leukoencephalopathy with axonal spheroids. We report the neuropathologic findings of a 51-year-old female with a homozygous mutation (Q33X) of TREM2 gene. Beside severe cerebral atrophy and hallmarks of Nasu-Hakola disease, significant Alzheimer's disease lesions were present. Neurofibrillary changes showed an atypical topographic distribution being severe at spots in the neocortex while sparing the mesial temporal structures. Our finding suggests that TREM2 genetic defects may favor Alzheimer's disease pathology with neurofibrillary changes not following the hierarchical staging of cortical involvement identified by Braak.


Assuntos
Encéfalo/patologia , Lipodistrofia/patologia , Emaranhados Neurofibrilares/patologia , Osteocondrodisplasias/patologia , Placa Amiloide/patologia , Panencefalite Esclerosante Subaguda/patologia , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/patologia , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Humanos , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/genética , Glicoproteínas de Membrana/genética , Pessoa de Meia-Idade , Neocórtex/diagnóstico por imagem , Neocórtex/patologia , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Receptores Imunológicos/genética , Panencefalite Esclerosante Subaguda/diagnóstico por imagem , Panencefalite Esclerosante Subaguda/genética , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia
12.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31619560

RESUMO

Measles virus (MeV) is an enveloped RNA virus bearing two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. Upon receptor binding, the H protein triggers conformational changes of the F protein, causing membrane fusion and subsequent virus entry. MeV may persist in the brain, infecting neurons and causing fatal subacute sclerosing panencephalitis (SSPE). Since neurons do not express either of the MeV receptors, signaling lymphocytic activation molecule (SLAM; also called CD150) and nectin-4, how MeV propagates in neurons is unknown. Recent studies have shown that specific substitutions in the F protein found in MeV isolates from SSPE patients are critical for MeV neuropathogenicity by rendering the protein unstable and hyperfusogenic. Recombinant MeVs possessing the F proteins with such substitutions can spread in primary human neurons and in the brains of mice and hamsters and induce cell-cell fusion in cells lacking SLAM and nectin-4. Here, we show that receptor-blind mutant H proteins that have decreased binding affinities to receptors can support membrane fusion mediated by hyperfusogenic mutant F proteins, but not the wild-type F protein, in cells expressing the corresponding receptors. The results suggest that weak interactions of the H protein with certain molecules (putative neuron receptors) trigger hyperfusogenic F proteins in SSPE patients. Notably, where cell-cell contacts are ensured, the weak cis interaction of the H protein with SLAM on the same cell surface also could trigger hyperfusogenic F proteins. Some enveloped viruses may exploit such cis interactions with receptors to infect target cells, especially in cell-to-cell transmission.IMPORTANCE Measles virus (MeV) may persist in the brain, causing incurable subacute sclerosing panencephalitis (SSPE). Because neurons, the main target in SSPE, do not express receptors for wild-type (WT) MeV, how MeV propagates in the brain is a key question for the disease. Recent studies have demonstrated that specific substitutions in the MeV fusion (F) protein are critical for neuropathogenicity. Here, we show that weak cis and trans interactions of the MeV attachment protein with receptors that are not sufficient to trigger the WT MeV F protein can trigger the mutant F proteins from neuropathogenic MeV isolates. Our study not only provides an important clue to understand MeV neuropathogenicity but also reveals a novel viral strategy to expand cell tropism.


Assuntos
Moléculas de Adesão Celular/metabolismo , Hemaglutininas Virais/metabolismo , Vírus do Sarampo/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Panencefalite Esclerosante Subaguda/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Moléculas de Adesão Celular/genética , Linhagem Celular , Cricetinae , Hemaglutininas Virais/genética , Humanos , Vírus do Sarampo/genética , Vírus do Sarampo/patogenicidade , Camundongos , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/patologia , Proteínas Virais de Fusão/genética
13.
Front Immunol ; 10: 1685, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396216

RESUMO

Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder characterized by progressive presenile dementia and bone cysts, caused by variants in either TYROBP or TREM2. Despite the well-researched role of TREM2 and TYROBP/DAP12 in immunity, immunological phenotypes have never been reported in NHD patients. We initially diagnosed an Italian patient, using whole exome sequencing, with classical NHD clinical sequelae who additionally showed a decrease in NK cells and autoimmunity features underlined by the presence of autoantibodies. Based on this finding, we retrospectively explored the immunophenotype in another two NHD patients, in whom a low NK cell count and positive autoantibody serology were recorded. Accordingly, Trem2-/- mice show abnormal levels of circulating proinflammatory cytokines and the dysfunction of immune cells, whereas knockout mice for Tyrobp, encoding the adapter for TREM2, exhibit increased levels of autoantibodies and defective NK cell activity. Our findings tend to redefine NHD as a multisystem "immunological" disease, considering that osteoclasts are derived from the fusion of mononuclear myeloid precursors, whereas neurological anomalies in NHD are directly caused by microglia dysfunction.


Assuntos
Células Matadoras Naturais/imunologia , Lipodistrofia/imunologia , Neuroimunomodulação/genética , Neuroimunomodulação/imunologia , Osteocondrodisplasias/imunologia , Panencefalite Esclerosante Subaguda/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Feminino , Humanos , Lipodistrofia/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Mutação , Osteocondrodisplasias/genética , Linhagem , Fenótipo , Receptores Imunológicos/genética , Panencefalite Esclerosante Subaguda/genética
14.
J Alzheimers Dis ; 68(3): 1171-1184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30883352

RESUMO

TREM2 (triggering receptor expressed on myeloid cells 2) gene variants were reported to increase the risk of Alzheimer's disease (AD) and even other neurodegenerative diseases (frontotemporal dementia (FTD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS)), but so far, no definite conclusion has been drawn. The aim of our systematic review and meta-analysis was to investigate the role of TREM2 variants in neurodegenerative diseases. A total of 39 papers (including 26 case-control studies and 13 case reports) were retrieved from PubMed, MEDLINE, EMBASE, and the Cochrane library in this study. A fixed effect model was used to pool results in the analysis. Three variants in TREM2 (rs75932628 (R47H), rs2234255 (H157Y), and rs143332484 (R62H)) were significantly associated with AD risk, but the similar associations between rs104894002 (Q33X), rs2234253 (T96K), rs142232675 (D87N), rs2234256 (L211P), and AD were not proven. Rs75932628 also increased risk of PD in North Americans and FTD, but not PD in Europeans or ALS. In the systematic review, 12 biallelic TREM2 mutations (e.g., rs104894002, rs201258663 (T66M), and rs386834144, etc.) have been described to cause Polycystic Lipomembranous Osteodysplasia with Sclerosing Leukoencephalopathy (PLOSL) in 14 families. And homozygous mutations also have been reported to cause FTD without typical bone phenotypes in 7 families. This study demonstrates that multiple variants in TREM2 have association with the onset of AD, FTD, and PD in North Americans and also play a key role in the phenotypes of the rare familial genetic disorder.


Assuntos
Predisposição Genética para Doença/genética , Glicoproteínas de Membrana/genética , Doenças Neurodegenerativas/genética , Receptores Imunológicos/genética , Doença de Alzheimer/genética , Demência Frontotemporal/genética , Variação Genética/genética , Humanos , Lipodistrofia/genética , Osteocondrodisplasias/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Panencefalite Esclerosante Subaguda/genética
15.
Cytokine ; 116: 115-119, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30690291

RESUMO

Homozygous mutations in Triggering Receptor Expressed on Myeloid cells 2 gene (TREM2) are one of the major causes of Nasu Hakola Disease (NHD). We analysed Peripheral Blood Mononuclear Cells (PBMC) profile of 164 inflammatory factors in patients with NHD carrying the TREM2 Q33X mutation as compared with heterozygous and wild type individuals. Several molecules related to bone formation and angiogenesis were altered in NHD compared to non-carriers: Bone Morphogenetic Protein (BMP)-1 mRNA levels were significantly increased in PBMC (2.32 fold-increase; P = 0.01), as were Transforming Growth Factor Beta (TGFB)3 levels (1.51 fold-increase; P = 0.02). Conversely, CXCL5 and Pro Platelet Basic Protein (PPBP) were strongly downregulated (-28.26, -9.85 fold-decrease over non-carriers, respectively, P = 0.01), as well as Platelet Factor 4 Variant 1 (PF4V1; -41.44, P = 0.03). Among other inflammatory factors evaluated, Interleukin (IL)-15 and Tumor Necrosis Factor Superfamily Member (TNFSF)4 mRNA levels were decreased in NHD as compared with non-carriers (-2.25 and -3.87 fold-decrease, P = 0.01 and 0.001, respectively). In heterozygous individuals, no significant differences were observed, apart from IL-15 mRNA levels, that were decreased at the same extent as NHD (-2.05 fold-decrease over non-carriers, P = 0.002). We identified a signature in PBMC from patients with NHD consisting of strongly decreased mRNA levels of CXCL5, PPBP, PF4V1, mildly decreased IL-15 and TNFSF4 and mildly increased BMP-1 and TGFB3.


Assuntos
Citocinas/sangue , Leucócitos Mononucleares/imunologia , Lipodistrofia/genética , Osteocondrodisplasias/genética , RNA Mensageiro/análise , Panencefalite Esclerosante Subaguda/genética , Proteína Morfogenética Óssea 1/genética , Quimiocina CXCL5/genética , Citocinas/genética , Feminino , Humanos , Inflamação , Leucócitos Mononucleares/patologia , Lipodistrofia/sangue , Lipodistrofia/patologia , Masculino , Glicoproteínas de Membrana/genética , Ligante OX40/genética , Osteocondrodisplasias/sangue , Osteocondrodisplasias/patologia , Fator Plaquetário 4/genética , RNA Mensageiro/genética , Receptores Imunológicos/genética , Panencefalite Esclerosante Subaguda/sangue , Panencefalite Esclerosante Subaguda/patologia , Fator de Crescimento Transformador beta3/genética , beta-Tromboglobulina/genética
16.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30487282

RESUMO

During a measles virus (MeV) epidemic in 2009 in South Africa, measles inclusion body encephalitis (MIBE) was identified in several HIV-infected patients. Years later, children are presenting with subacute sclerosing panencephalitis (SSPE). To investigate the features of established MeV neuronal infections, viral sequences were analyzed from brain tissue samples of a single SSPE case and compared with MIBE sequences previously obtained from patients infected during the same epidemic. Both the SSPE and the MIBE viruses had amino acid substitutions in the ectodomain of the F protein that confer enhanced fusion properties. Functional analysis of the fusion complexes confirmed that both MIBE and SSPE F protein mutations promoted fusion with less dependence on interaction by the viral receptor-binding protein with known MeV receptors. While the SSPE F required the presence of a homotypic attachment protein, MeV H, in order to fuse, MIBE F did not. Both F proteins had decreased thermal stability compared to that of the corresponding wild-type F protein. Finally, recombinant viruses expressing MIBE or SSPE fusion complexes spread in the absence of known MeV receptors, with MIBE F-bearing viruses causing large syncytia in these cells. Our results suggest that alterations to the MeV fusion complex that promote fusion and cell-to-cell spread in the absence of known MeV receptors is a key property for infection of the brain.IMPORTANCE Measles virus can invade the central nervous system (CNS) and cause severe neurological complications, such as MIBE and SSPE. However, mechanisms by which MeV enters the CNS and triggers the disease remain unclear. We analyzed viruses from brain tissue of individuals with MIBE or SSPE, infected during the same epidemic, after the onset of neurological disease. Our findings indicate that the emergence of hyperfusogenic MeV F proteins is associated with infection of the brain. We also demonstrate that hyperfusogenic F proteins permit MeV to enter cells and spread without the need to engage nectin-4 or CD150, known receptors for MeV that are not present on neural cells.


Assuntos
Vírus do Sarampo/genética , Panencefalite Esclerosante Subaguda/genética , Proteínas Virais de Fusão/genética , Substituição de Aminoácidos , Animais , Encéfalo/virologia , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Epidemias , Feminino , Genótipo , Células Gigantes/virologia , Células HEK293 , Humanos , Masculino , Sarampo/epidemiologia , Sarampo/metabolismo , Sarampo/virologia , Mutação , Neurônios/virologia , África do Sul , Panencefalite Esclerosante Subaguda/virologia , Células Vero , Proteínas Virais de Fusão/metabolismo
18.
Gene ; 678: 73-78, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30077763

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a progressive neurodegenerative disease which affects children and young adults, caused by a persistent infection of defective measles virus. IFN-λs (IL-28A, IL-28B and IL-29) are a group of cytokines mediating antiviral responses. It has been shown that IL-29 levels are significantly higher in infected cells with defective measles virus. IL-29 expression is thought to be regulated at post-transcriptional level and miRNA-548 family targets the 3'UTR of the IFNL1 gene. Impaired immune system has an important role as well as viral factors in SSPE. The aim of our study investigates whether IL-28B, IL-29 levels and gene polymorphisms contribute to the damaged immune response leading to the development of SSPE. Also possible association of miR-548 family with IL-29 and SSPE is explored. Frequencies of rs12979860, rs8099917, rs30461, serum levels of IL-28B, IL-29 and expression levels of miR-548b, miR-548c, miR-548i are determined at 64 SSPE patients and 68 healthy controls. Serum IL-29 levels are statistically significant higher in SSPE patients. Allele frequencies of rs8099917 are statistically significant higher in SSPE patients and resulted G allele is found to increase 2.183-fold risk of SSPE. The expression levels of miR-548b-5p, miR-548c-5p and miR-548i are found to be statistically significant higher in SSPE patients. Dramatically increased level of IL-29 seen in patient group indicates that the elevated miR-548 expression is compensatory result of the over-activated immune system response. Further studies referred to IL28, IL29 and related miRNA's will be enlightened the pathogenesis of SSPE.


Assuntos
Interleucinas/genética , MicroRNAs/genética , Doenças Raras/genética , Panencefalite Esclerosante Subaguda/genética , Regiões 3' não Traduzidas , Adolescente , Idade de Início , Estudos de Casos e Controles , Criança , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Interferons , Interleucinas/sangue , Masculino , Polimorfismo de Nucleotídeo Único , Panencefalite Esclerosante Subaguda/sangue
20.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29298883

RESUMO

Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV.IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. This neurological complication is almost always fatal, and there is currently no effective treatment for it. Mechanisms by which MV invades the CNS and causes the disease remain to be elucidated. We have previously shown that fusion-enhancing substitutions in the fusion protein of MVs isolated from SSPE patients contribute to MV spread in neurons. In this study, we demonstrate that MV bearing the hyperfusogenic mutant fusion protein spreads between human neurons in a cell-to-cell manner. Spread of the virus was inhibited by a fusion inhibitor peptide and antibodies against the MV hemagglutinin, indicating that both the hemagglutinin and hyperfusogenic fusion protein play important roles in MV spread between human neurons. The findings help us better understand the disease process of SSPE.


Assuntos
Hemaglutininas Virais/metabolismo , Vírus do Sarampo/metabolismo , Sarampo/transmissão , Neurônios/metabolismo , Panencefalite Esclerosante Subaguda/transmissão , Proteínas Virais de Fusão/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Hemaglutininas Virais/genética , Humanos , Sarampo/genética , Sarampo/metabolismo , Sarampo/patologia , Vírus do Sarampo/genética , Vírus do Sarampo/patogenicidade , Neurônios/patologia , Neurônios/virologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Panencefalite Esclerosante Subaguda/patologia , Células Vero , Proteínas Virais de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...